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Abstract

Bayesian inference methods are extensively used to detect the presence of population structure given genetic data. The
primary output of software implementing these methods are ancestry profiles of sampled individuals. While these profiles
robustly partition the data into subgroups, currently there is no objective method to determine whether the fixed factor of
interest (e.g. geographic origin) correlates with inferred subgroups or not, and if so, which populations are driving this
correlation. We present OBSTRUCT, a novel tool to objectively analyse the nature of structure revealed in Bayesian ancestry
profiles using established statistical methods. OBSTRUCT evaluates the extent of structural similarity between sampled and
inferred populations, tests the significance of population differentiation, provides information on the contribution of
sampled and inferred populations to the observed structure and crucially determines whether the predetermined factor of
interest correlates with inferred population structure. Analyses of simulated and experimental data highlight OBSTRUCT’s
ability to objectively assess the nature of structure in populations. We show the method is capable of capturing an increase
in the level of structure with increasing time since divergence between simulated populations. Further, we applied the
method to a highly structured dataset of 1,484 humans from seven continents and a less structured dataset of 179
Saccharomyces cerevisiae from three regions in New Zealand. Our results show that OBSTRUCT provides an objective metric to
classify the degree, drivers and significance of inferred structure, as well as providing novel insights into the relationships
between sampled populations, and adds a final step to the pipeline for population structure analyses.
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Introduction

When there is a lack of free gene flow within sexual populations,
neutral and selective forces will erode population homogeneity and
tend to establish population structure [1,2]. This process of
subdivision will have a significant bearing on genetic diversity,
local adaptation and processes such as speciation [3,4]. When
individuals sampled from discrete points (such as similar
geographic locations or niches) tend to be more closely related
to one another than between points, this supplies evidence of
population structure. Subgroups isolated by barriers to gene flow
will become increasingly differentiated by the processes of
mutation, selection and drift but sufficient gene flow between
subgroups will serve to homogenise groups into a single population
[5–7]. Classic population genetics methods estimate the combined
effect of these processes to infer the extent of population
subdivision by analysing allele frequencies within and between
sampled populations, that may or may not be differentiated [8].
Under this framework, sample locations are chosen to test factors
thought to mainly define population structure, usually geographic
location. The drawback of these methods is that one must a priori
assign individuals to populations: it is conceivable that population
structure exists but is missed by such a priori assignments because a
factor other than the one considered is driving population

structure. A widely used, newer and more powerful approach
utilises Bayesian MCMC methods to test for population structure
and dispenses with the need to assign individuals a priori to
populations, and thus circumvents this issue [8]. These methods
iteratively determine the optimal number of populations (within
which there is free gene flow) given the data, and subsequently
assign individuals to these inferred populations probabilistically.
These methods may account for admixture, or some level of gene
flow between inferred populations, in which case the proportion of
each individual’s ancestry in each population is estimated and thus
ancestry profiles are generated for each individual [8,9]. While
these methods are powerful at determining whether structure is
present, they do not allow one to determine which factors drive
this structure as the current protocol relies on the subsequent
subjective interpretation of plots of ancestry profiles. Simply, we
propose a method to objectively analyse these inferred ancestry
profiles.

STRUCTURE is the most widely-used software package for
Bayesian analysis and clusters individuals by attempting to create
inferred populations that are in, or as close as possible to, Hardy-
Weinberg equilibrium [8]. If admixture is assumed, this results in a
large number of optimal configurations so STRUCTURE produces
ancestry profiles for each individual showing the proportion of

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85196



time each individual is present in each of the inferred populations.
The methods implemented in INSTRUCT [9] also produce ancestry
profiles but extend the structure algorithm and allow analysis
without the assumption of Hardy-Weinberg equilibrium by
calculating expected genotype frequencies based on the rates of
inbreeding within each inferred population. This means InStruct is
more suited to analyse populations that may be highly inbred, such
as some plants and most microbes [9]. Finally, baps implements a
number of novel algorithms which aim to efficiently analyze large-
scale datasets to determine structure and admixture; the output of
these analyses also being ancestry profiles [10,11].

The optimal number of inferred populations may be estimated
from these analyses [9,10,12]. The ancestry profiles for each
sampled individual produced by these software packages may be
examined, and a graphical overview of the patterns may be
produced using DISTRUCT [13] or within BAPS itself. The ancestry
profiles represent an objective estimation of structure and
admixture within the data, and DISTRUCT visualises groupings by
colouring each inferred population uniquely so that a highly
structured dataset will show sampled populations mostly contain-
ing a single colour. While this approach produces a figure that is
readable, it only allows a subjective visual interpretation of
whether any patterns in the ancestry profiles correlate with the
fixed factor of interest (e.g. geographic origin of samples). In clear-
cut cases of striking population subdivision this might be sufficient,
however not all datasets will show clear differentiation. Factors
such as high admixture, recent divergence and inadequate
sampling will create noise in the data which renders plots of
ancestry profiles difficult to interpret. Presently, there is no method
to objectively analyse these ancestry profiles. The method
presented here addresses the interpretation of signals for popula-
tion structure by analysing ancestry profiles generated by Bayesian
methods, and is not concerned with the Bayesian method itself,
which we consider robust.

The main aspect we consider here is how the assignment of
individuals to inferred populations relates to the factor of interest.
The Bayesian methods derive and assign individuals to subgroups
without knowledge of the origin of individuals. Imagine one
samples individuals from three geographic locations, and hence
location is hypothesised to be a driver of structure. An analysis of
the genotypes obtained using Bayesian methods suggest the
optimal number of inferred populations is four. What does this
mean? Any number of possibilities are biologically feasible: one
location might harbor two or more populations, or perhaps
geographic origin bears no relationship to the inferred popula-
tions, but some other factor does. The issue is that the current
visualisation methods, while informative, do not allow population
assignments and ancestry profiles to be objectively analysed: a
subjective assessment of the plots is only possible. Our method
statistically analyses these ancestry profiles and allows one to
determine whether inferred population assignment and the factor
of interest (e.g. origin of individuals) are significantly correlated.
Having determined the extent to which a factor of interest defines
observed population structure, one may then conduct finer scale
analyses to ascertain the relative contribution of each sampled and
inferred population to overall population structure. Which
sampled and inferred populations are most differentiated or
contribute the most to overall structure? We set about applying a
statistical procedure which can objectively quantify the level of
structure in these ancestry profiles, test the sources of structure,
and determine statistical significance using a permutation
approach. Our method complements visualization with distruct,
adds a final step to the pipeline for population structure analyses,
and allows one to analyse factors driving population structure

within ancestry profiles and the extent to which these factors are
explaining the variability seen within ancestry profiles as a whole.

Methods

Data
OBSTRUCT directly takes STRUCTURE [8], INSTRUCT [9] and BAPS

[10,11] outputs from analyses that include admixture. For each
individual sampled the outputs contain the proportion of ancestry
in each inferred population, summing to one. A specific range of
inferred populations (K ) is typically run to determine the optimal
value of K that gives the highest resolution of individuals to
inferred populations. OBSTRUCT can either use the optimal value
of K determined by INSTRUCT using Deviance Information
Criterion (DIC) or a value specified by the user. baps can estimate
K using its log(ml) algorithm or use a value specified by the user.

STRUCTURE does not estimate an optimal K and needs a secondary

method to determine the optimal K (e.g., [12]).
OBSTRUCT tests whether the population structure represented

by the ancestral profiles is correlated to the structure given by the
predefined populations (sampled populations). Predefined popula-
tions are discrete sampling units within the data based on the
factor of choice. For example, predefined populations in a
geographic study would be different sampled regions. Predefined
populations can be specified at different categorical scales to
explore a single dataset in multiple ways, e.g. by language,
continent, altitude, salinity, region, pH, etc. If inferred structure
correlates with predefined populations, individuals within each of
the predefined populations will tend to have high values of
ancestry in a small number of unique inferred populations.

The R2 Statistic
Our aim is to determine the extent to which the factor of

interest (encoded as the predefined populations) is reflected in the

ancestry profiles. We use the R2 statistic to quantify this extent. Let
S denote the number of predefined populations, and K the
number of inferred populations. Let nj denote the number of

individuals in population j~1, . . . ,S, and let yijk denote the

ancestry of individual i from predefined population j in inferred
population k. Hence, we have yij1z . . . zyijK~1. Further let y:jk
denote the proportion with which the average individual in
predefined population j is in inferred population k (also known as
the group mean), and let y::k denote the proportion with which the
average individual is in inferred population k (also known as the
overall mean).

Our null hypothesis states that the inferred ancestries do not
reflect our predefined populations, i.e. individuals inferred to share
a high proportion of ancestry (forming a population within the
data) appear randomly scattered among the predefined popula-
tions or, alternatively, all individuals have equal ancestries to all
inferred populations. In short, this indicates the factor of interest
does not account for or drive inferred population structure. An
established way of assessing how well the predefined populations
are represented by the inferred populations is by evaluating the
variation within and across predefined populations (e.g., [14,15]).
The sum of squares across populations (SSA) is given as follows:

SSA~
XK

k~1

XS

j~1

nj
: y:jk{y::k

! "2
:
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The nj in the summation accounts for heterogeneous population
sizes. The sum of squares within populations (SSW ) is given by:

SSW ~
XK

k~1

XS

j~1

Xnj

i~1

yijk{y:jk

! "2
~
XK

j~1

XS

j~1

(nj{1):s2
jk,

where s2
jk is the empirical variance of population j within group

k. To see how much of the variability in the ancestry profiles is
explained by the predefined populations, we simply compute the

multiple R2 statistic:

R2~
SSA

SSAzSSW
, ð1Þ

i.e., we assess how much of the total variability in the data is
accounted for by grouping the data points according to the

predefined populations. The R2 statistic is well-known and easily

interpretable. A low R2 means that either the predefined
populations have diverged quite recently or that there is a lot of

migration and admixture between the populations. A high R2

indicates strong diversification and/or population structure.
The usual way of assessing the amount of evidence against the

null hypothesis is by computing a p-value. In classic ANOVA, one
uses SSA and SSW to build the F statistic which is F -distributed
with degrees of freedom corresponding to S{1 and N{S, where
N~n1z . . . ,nS . However, since we have K response variables
this approach is no longer valid [15]. Instead, we generate a

distribution for the R2 statistic under the null hypothesis using
permutations of individuals (e.g., [14,15]). If our null hypothesis is
true, then the perceived similarity within predefined populations is
arbitrary and permuting the ancestry profiles of the individuals

should not significantly change the R2 statistic. For our approach
we considered 10,000 permuted datasets appropriate. The p-value

is then the proportion of permuted datasets for which the R2

statistic exceeds the value for the initial dataset.
Since we assess the null hypothesis using the variability in the

data, and the data are proportions, we have to account for
heterogeneity in variance. Proportions close to 0 or close 1 tend to
have a smaller variance than proportions close to 0.5. Not
accounting for this can lead to observing effects that are due to the
heterogeneity in the variance rather than similarities in the
population structure. To address this problem we follow the
common approach and use the logit transform on the proportions,
i.e. we replace yijk with:

logit(yijk)~ log (yijk){ log (1{yijk):

Additional Analyses of Population Structure
Relative Contributions of Populations. Having established

the overall level of structure within the dataset, we can apply the
statistic to examine the relative contributions of each of the
predefined and inferred populations to this structure. To assess the
contribution we remove one predefined or one inferred population

at a time and recalculate R2 for the reduced dataset. An increase

in R2 means that the removed population was more homogenised
than average and thus contributed less than average to the

structure in the data. A decrease in R2, on the other hand,

indicates that the removed population contributed to an increase
in structure by discriminating against the other populations or
showing discriminating structure itself. Such an analysis has
biological relevance in determining the main drivers of population
structure, e.g. whether just a few populations are giving rise to the
total structure seen in the data.

Pairwise Comparisons of Predefined Populations. The
primary units of interest are populations deriving from the
predefined factor level (e.g. geographic location) so we next focus
on further analysing the patterns of structure between them. This
allows us to identify similarities and differences between prede-
fined populations and test the significance of these relationships.

To do this we apply the R2 statistic calculation for all pairwise
combinations of predefined populations to produce a pairwise

matrix of R2 values. To access the significance of the similarities or
differences between predefined populations we again carry out by
permutation of ancestry profiles within each pairwise combination
and correct for multiple re-sampling with Bonferroni correction.

Visualisation of Structure. An integral part of every
statistical analysis is plotting the data to visualise the outcome of
the analysis. To visualise the structure derived from the inferred
populations and their relation to the predefined populations we
use canonical discriminant analysis (CDA, see e.g., [14]). CDA is a
method to assess and visualise the correlation between a set of
response variables and a set of dummy variables coded from the
factor variable. Here, each inferred population is treated as a
response variable and the predefined populations compose our
factor variable. The data on which the CDA is executed are the
logit-transformed ancestral profiles. A CDA starts by fitting a
linear model between each inferred population and the predefined
population, and then combines these K models into a single model
which assesses the correlation of the inferred populations. It then
suggests a set of transformed, orthogonal variables which help
visualising the observed divergences in the data. The difference of
a CDA to the more popular principal component analysis is the
explicit inclusion of the explanatory variable in the calculations.

The output of OBSTRUCT contains a script executable in the
statistical software R (http://www.r-project.org), using the R-
specific packages candisc and heplots [16]. Upon execution it will
create three figures.

The first figure visualises all individuals coloured according to
the predefined population they belong to. The two axes are
labelled with the two variables explaining the highest proportion of
variability in the data. This proportion is part of the axis label, thus
providing the user with information about the amount of
variability visualised in the 2D-plot. Further, the plot shows two
ellipsoids centred at the hypothetical average over all data points.
The inner ellipse contains approximately 50% of the individuals
while the outer ellipse contains about 95% of the individuals.

The second figure summarises the information of the first by
drawing 66% ellipsoids for every predefined population centred at
the respective population mean. This type of plot indicates the
position of the predefined populations relative to each other when
given the transformed variables.

The final figure is called an HE plot. Here, the H stands for
hypothesis, and E stands for error. The plot will post the same axis
labels as the previous plots. However, the predefined populations
are reduced to simply show their centres. In addition, inferred
populations are visualised by arrows indicating their relation to the
transformed variables. Possibly the most important feature of the
plot are the two ellipsoids. The one labeled group indicates the
range of individuals, while the red ellipsoid labeled error indicates
the range of variation between the group means if predefined and
inferred populations do not resemble each other. If there is no
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resemblance in structure the red ellipsoid will be large and
potentially exceed the group ellipsoid, while a strong resemblance
will lead to a small error ellipsoid within the group ellipsoid.

Trial Datasets
To test the effectiveness of our method, we applied it to

simulated and experimental data. Simulations using coalescent
theory allow the demographic modeling of population structure
backwards in time. This means we can directly compare the
divergence of populations with known parameters with the
performance of our method to describe population division
processes throughout the simulation. The application of our
method to experimental data then serves to illustrate the practical
benefits of the method and provides further useful information on
the data.

Simulations. The fastsimcoal software [17] was used to
simulate three populations of 25,000 diploid individuals each
diverging into 5 populations of 5,000 diploid individuals and then
continuing to evolve without gene flow for 1,000 generations.
Samples of 100 individuals from each population were taken every
50 generations starting from the initial divergence up to 1,000
generations, resulting in 21 sampling points per population. The
simulation outputs were specified as 10 unlinked microsatellite loci
with the geometric parameter for a Generalised Stepwise
Mutation model of 0.05. Ten markers were used as a conservative
measure of variation, if structure can be found in ten markers then
more will only add to the power of the method. The microsatellite
profiles were analysed for population structure using INSTRUCT

and STRUCTURE (10,000 iterations of burn-in, 20,000 iterations of
sampling, 3 chains) with K set to 5 since this is the true number of
populations within this dataset. The resulting ancestry profiles

were used to calculate R2 to determine whether the increasing
population structure generated in the simulations was recovered
with this new method of analysis.

Experimental Data. We chose to analyse two published
datasets showing high and low levels of population structure in
order to evaluate the effectiveness of our method across a range of
conditions encountered in nature. The first of these datasets
comprises 1,484 humans genotyped at 678 microsatellite loci in 78
worldwide populations from 7 distinct geographic continents [18].

R2 was calculated with predefined populations specified at both

Figure 1. Change in population structure over 1,000 generations of simulated population divergence as inferred by (a) STRUCTURE

and (b) INSTRUCT. Error bars denote the standard error of three separate simulations for each sampling time point.
doi:10.1371/journal.pone.0085196.g001

Table 1. R2 values calculated for two experimental datasets
of human and S. cerevisiae microsatellite profiles.

Dataset Scale R2

Human Continental 0:77+0:01***

Regional 0:92+0***

S. cerevisiae Regional 0:22+0***

The error reported is the standard error of calculating R2 for three separate
chains of each dataset.
***Denotes (pv0:0001).
doi:10.1371/journal.pone.0085196.t001

OBSTRUCT: A Method to Analyse Ancestry Profiles
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the continental and regional scales to determine whether greater
population structure was observed at finer-scale sampling, as might
be expected. The second dataset comprises Saccharomyces cerevisiae (a
microbial sexual diploid eukaryote) isolates sampled from three
regions of the North Island of New Zealand and genotyped at 9
microsatellite loci [19]. A conserved microsatellite binning
procedure was applied to the data leaving a total of 179 isolates
from the three sampled regions. Microbes are not constrained as
heavily by body size, population density or range size as are larger
organisms, leading some to hypothesise an increase in passive
dispersal ability [20]. S. cerevisiae also has an extensive history of
human association [21] which means this dataset might contain
less population structure due to increased gene flow between
regions due to both passive and human-mediated movement.

The human data were analysed with structure as per [18] for
10,000 iterations of burn-in and 20,000 iterations of sampling
using the admixture model. K was set to 6 as this was the maximal
value that was found to significantly increase the resolution of the
resulting ancestry profiles in the original study. Three independent
chains were run to check for convergence. Due to the highly
inbred nature of S. cerevisiae, INSTRUCT was run on this dataset for
100,000 iterations of burn-in and a further 100,000 iterations of
sampling using the admixture model from K~ 1 to 30 and 3
chains per K . Both programs output ancestry profiles in the
distruct format which ObStruct parses. To provide a visual
comparison with our method, ancestry profiles were plotted using
distruct [13].

Implementation
The OBSTRUCT method is implemented in a Perl script called

ObStruct.pl which, along with documentation, is available from
http://goddardlab.auckland.ac.nz/ObStruct. The script takes
outputs from STRUCTURE, INSTRUCT and BAPS directly to calculate

R2 values and generates two output files: a comma-separated text

file summarising the results of the R2 analyses, and an R-script

providing the commands to visualise the relationship of predefined
and inferred population structure in the data.

Results

Simulated Data
The R2 proportions generated from the simulated datasets are

plotted in Figure 1 for STRUCTURE and INSTRUCT. As expected,
both figures show an increase in the level of inferred population
structure through time after the initial divergence event. Since no
gene flow occurred between populations and the rate of mutation
is the same for all populations, the only variability in the
simulations should be that of sampling. 5,000 individuals are
present in each population but just 100 are sampled at each time
point. This variability gives rise to stochasticity in the levels of
population structure which is further operated on by their analyses

leading to variation in the R2 proportions, shown by the error
bars.

Our analysis shows INSTRUCT gave rise to a consistent
relationship between time and structure with little variability seen
within each sample for the three replicate simulations (Figure 1b).

STRUCTURE displayed a similar relationship but with significantly

increased error around R2 proportions (Figure 1a). The detection
of significant population structure, as determined using permuta-
tion significance testing, also showed a similar pattern where
significance (pv0:05) was observed for all simulations after 50
generations in the INSTRUCT analyses while the last non-significant
replicate was observed at generation 450 for the structure analyses.
The gradual increase in STRUCTURE reported by INSTRUCT more
accurately reflects the expectations given the parameters of the
simulations, given the fact that populations are necessarily inbred
due to the absence of gene flow between populations.

STRUCTURE aims to maximise Hardy-Weinberg equilibrium
within inferred populations whereas INSTRUCT instead focusses on
using inbreeding rates to calculate expected genotype frequencies

Figure 2.World map showing DISTRUCT plots of ancestry profiles for 1,484 humans sampled from seven continents from [18]. Ancestry
profiles were generated using STRUCTURE with K~6.
doi:10.1371/journal.pone.0085196.g002
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within inferred population. The choice of software should be made
based on biological information instead of statistical consider-
ations. Nevertheless, these results clearly show that OBSTRUCT is
capable of identifying the predefined population structure in the
ancestral profiles produced using both methods, if it exists.

Results for Experimental Data
Applying the OBSTRUCT method to experimental data allows an

additional empirical analysis of population structure over the
description of graphical outputs of ancestry profiles using district
plots. Graphical outputs are open to interpretation whereas
OBSTRUCT provides objective insights into the resemblance
between predefined and inferred population structure. We will
not only mirror the conclusion of the studies from which the data
are taken, but also expand upon these results and provide new
insights.

Geographically-diverse Human Microsatellite
Profiles. We recapitulated the analyses of data from [18] using

structure with K~6. R2 was calculated when the data were
partitioned by continent (n~7) and region (n~78) to enable

analysis of structure at disparate scales. The resulting R2 values are
shown in Table 1. The structural resemblance observed is much

higher when partitioned by region (R2~0:92; pv0:0001) com-

pared with partitioning by continents (R2~0:77; pv0:0001). This
is not surprising since we would expect individuals sampled at finer
scales to be more closely related. The variability observed between
the three chains run for each dataset is minimal, indicating
adequate convergence of chains.

Table 2 shows the changes to the R2 values when each
predefined continental population is removed. Removing Africa

reduced R2 the most, meaning that this continent has the highest
proportion of individuals with high ancestries to a single inferred
population, and thus contributes the most to the signal for
population structure. The removal of East Asia and Europe

reduced the R2 value below the overall value by a smaller margin
indicating higher than average levels of structure within these

continents. The Middle East and Oceania left the value of R2

unchanged. Continents that caused R2 to increase above the
overall value were Central South Asia and America. Removing

America in particular causes a large increase in R2 from the

observed value, indicating that it is the most heterogenous
continent harboring individuals with mixed ancestries. These
analyses complement patterns seen in the distruct plot of this data
shown in Figure 2. However, Oceania appears to be highly
structured into a single unique inferred population in the plots but

its removal does not alter the R2 value in our analyses. The reason
for this lies in this continent’s small population size of 36

individuals. The calculation of R2 takes into account sample size
and will adjust for populations with small sizes since their high
structure might be due to chance. Our choice to include the
Oceania data stems from the desire to use the full dataset from the
original publication and show how our method deals with small
population sizes.

Table 2 also shows the changes in R2 values when each of the
six inferred populations is removed in turn for the continental

scale. All inferred populations apart from two decrease R2 from
the overall value, which indicates these inferred populations are
contributing to structure within the data. Inferred population three

doesn’t change the R2 value and inferred population two increases
it (shown in blue in Figure 2). Individuals with high ancestry to this
inferred population come from two regional populations within
the American continent. Since this inferred population only occurs
in America as a subset of the overall diversity in that continent,
removing it serves to increase the signal of structure from the
entire American continent. This shows the diagnostic value of this
technique for identifying potential sub-structure within predefined
populations.

Table S1 shows R2 values for each pairwise combination of
sampled continents. When visually compared with the distruct plot
of the data (Figure 2), a number of interesting patterns emerge.

First, among these are the significantly reduced R2 values for all
pairwise combinations involving America, resulting from the high
heterogeneity of ancestries within the American continent.
Comparisons of the three continents with high levels of ancestry

in the purple inferred population have R2 values at or below 0.3,
indicating relatively little differentiation. The largest increases to

R2 are observed in pairwise comparisons involving Africa, showing
that this continent is the most distinct. East Asia shows a similar
pattern to Africa but not to the same extent due to the admixture
seen within it (purple bars amongst the orange). Oceania is a
unique case since in the distruct plot it appears to be highly

structured, but the pairwise R2 values are lower than for the
similarly highly-structured Africa. This is again explained by the
small sample size from the Oceania continent which means this
sample is biased within any pairwise combinations by contributing
less to the sum of squares across (SSA). While many of the patterns
observed in our analysis can be seen within the DISTRUCT plots, it is
important to stress the objective nature of our analyses supporting
the subjective interpretation of plotted ancestry profiles. Further,
not all datasets are as clear-cut and easy to interpret as this highly-
structured dataset, the next experimental dataset on S. cerevisiae
strains illustrates this.

Saccharomyces cerevisiae Microsatellite
Profiles. Table 1 shows that the observed R2 value for the S.
cerevisiae dataset is 0:22 (pv0:0001). Figure 3 matches the ancestry
profiles for this dataset, as generated with distruct, to the location
of the sampled regions in New Zealand.

The relatively low R2 value compared to the human dataset is
due to two reasons, (1) only nine loci are used in the yeast data
while there were 678 loci encoding divergence in the human data,
and (2) these yeast populations appear to experience more
admixture than human populations. Despite this, we observe
structure within inferred populations that is explained by

Table 2. Changes from the observed R2 value when each
continent and inferred population is removed in turn for the
human dataset.

Predefined
Population R2

Inferred
Population R2

Africa {0:04+0:01 6 (Purple) {0:01

East Asia {0:03+0:02 5 (Green) {0:01

Europe {0:02+0:01 4 (Pink) {0:01

Middle East {0:01+0:01 1 (Orange) {0:01

Oceania {0:01+0:01 3 (Yellow) 0:00

Central South Asia 0:01+0:01 2 (Blue) 0:04

America 0:10+0:01

The colours for inferred populations correspond to those seen in Figure 2. The
error reported for the continents is the standard error of R2 calculated for three
separate chains of each dataset. No such error is reported for inferred
populations because the designations for inferred populations differ between
chains.
doi:10.1371/journal.pone.0085196.t002
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corresponding sampled regions, i.e., unique genetic diversity is
found within at least one of the sampled regions. Our in-depth
analysis (Table S2) shows that removing West Auckland from the

data leads to a reduction in R2 by 0:12, meaning that this region
contains the highest proportion of individuals with high ancestries
to inferred populations not seen elsewhere; the turquoise inferred
population in Figure 3. Waiheke Island and Hawke’s Bay contain

some unique population structure as evidenced by a significant R2

value when West Auckland is removed from the data. Unique
structure is seen in the Waiheke Island and Hawke’s Bay regions in
the light blue and purple inferred populations within each region

(Figure 3), and this structure is enough to reduce the R2 value
slightly by 0:02 for Waiheke Island and 0:01 for Hawke’s Bay
when each region is removed from the data.

Finally, the changes to R2 when each inferred population is
removed in turn (data not shown) indicate that a single inferred

population, when removed, reduces the R2 by 0:08 while the rest
increase it by 0{0:1. This indicates that one of the inferred
populations is driving structure within the dataset, i.e. comprises a
large number of individuals from a single region. This pattern is
identical for all three chains run for the data. This population is in
fact the turquoise inferred population seen extensively in West
Auckland, shown in Figure 3.

Figure 4 shows two of the plots ObStruct creates when applied
to this dataset. We see that two transformed variables are sufficient
to visualise the variation for all individuals, with the first variable
covering 71:6% and the second the remaining 28:4%. Figure 4a
visualises the position of individuals to each other, coloured by
their membership to a predefined population. We see that all three
populations are relatively separate with West Auckland showing a
large cluster of individuals separate from the rest. Figure 4b
reduces the sampling populations to their center and visualises the

Figure 3.Map of New Zealand showing DISTRUCT plots of ancestry profiles for 179 S. cerevisiae sampled from three regions from [19].
Ancestry profiles were generated using InStruct with K~10.
doi:10.1371/journal.pone.0085196.g003
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influence of the inferred populations with arrows (inferred
populations are coloured the same as in Figure 3). We see that
the turquoise arrow representing inferred population 3 strongly
points toward West Auckland encompassing the cluster of
individuals there. The unique structure within Waiheke Island is
encompassed by inferred populations 4 and 7, with the rest of the
inferred populations covering the direction of Hawkes Bay. While
this can also be seen in the DISTRUCT plot, the HE plot adds an
extra layer by visualising the strength of resemblance through the
red error circle which indicates that Hawke’s Bay and Waiheke
Island could be considered more similar to each other than to
West Auckland, an observation that is not as obvious when looking
at DISTRUCT plots.

Note that not every dataset will show enough discrimination
with just two CDA variables. The variation indicated at the axis is
a good indicator of how much variation has been covered by the
CDA variables. If a third variable is useful, use the R-function
heplot3d for an interactive, 3-dimensional form of the HE-plot.

Discussion

We have presented a novel application of a classic statistical tool
to analyse ancestry profiles produced from the Bayesian methods
implemented in STRUCTURE and INSTRUCT. Our method analyses
the signals for population structure present in these ancestry
profiles and determines the extent to which inferred structure
correlates with the predefined factor of interest. We believe this
method is a valuable addition to the existing pipeline for analysing
population structure and extends the subjective interpretation of
plots of ancestry profiles. To support our position we have applied
the method to three distinct datasets: analyses of simulations show
the ability of OBSTRUCT to capture information on overall
structure; analyses of human data show how the method performs

on a highly structured dataset; and, analyses of S. cerevisiae data
show how the method performs on a highly admixed dataset.

The steady increase in structure through time since divergence
seen in the simulation data would not be easy to determine using
present methods in population genetics. Our method quickly and
easily captures this information and tests significance using a
permutation approach. We found that within our simulations
significant population structure could be detected in all three
replicates after 50 generations by INSTRUCT and after 450
generations by STRUCTURE. After 1,000 generations of divergence,
analyses of outputs from STRUCTURE and INSTRUCT converged on

R2 values around 0.85, although STRUCTURE produced inconsistent

R2 values, possibly due to the way the method attempts to cluster
inferred populations based on assumptions of Hardy-Weinberg
equilibrium. Testing for differences in the effectiveness of these
two methods is outside the scope of this study, but these results

indicate the R2 is suitable for such tests and clearly indicates the
levels of population structure in datasets.

The application of our method to experimental data showed the

comparability of the overall R2 value between datasets. The highly

admixed S. cerevisiae had a much lower R2 value of 0:22 compared
with 0:77 for the human data partitioned by continent, or 0:92 by
region. Our new method allows one to test if the factor of interest
correlates with inferred structure. Further, we were able to
objectively determine the sources of structure within these datasets.
Understanding the drivers of structure allows us to draw
biologically relevant conclusions and understand the relative
relatedness of sampled populations.

The absolute R2 value is useful for comparing datasets but it is

difficult to generalise specific R2 values to categorical levels of
structure. Rather, we recommend in-depth exploration of the
dataset by using the pairwise predefined population matrix and

lists of R2 values when each predefined and inferred population is

Figure 4.Canonical discriminant analysis on the Saccharomyces cerevisiae dataset. (a) Mapping the individual data according to the CDA
variables. The inner ellipsoid contains 50% of all individuals, the outer ellipsoid contains 95% of all individuals. Individuals are colour- and shape-
coded according to their respective sampled region. (b) The HE plot shows the relation of variation in the group means on two variables relative to
the error variance. The coloured arrows indicate the position of the inferred populations relative to the axes obtained by the canonical discriminant
analysis. The black points indicate predefined populations (WA = West Auckland; WI = Waiheke Island; HB = Hawke’s Bay) while numbers at the
arrows indicate inferred populations.
doi:10.1371/journal.pone.0085196.g004
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removed. It is this exploration that uncovers sources of structure
within the data between specific populations, for example, it may
be possible that one predefined population is very distinct from the
rest of the data which itself shows high admixture. This means that

the overall R2 value is primarily itself only a benchmark against
which to compare the changes to it from deeper tests performed by
our method. Manual manipulations of ancestry profiles show that

the R2 statistic is able to differentiate differences in ancestry
proportions as low as 1% which makes it a sensitive measure of
structure.

The method described in this work has wide-ranging applica-
tions to any field employing population genetic techniques, and we
feel that this is a valuable addition to a pipeline for the analyses of
population structure. An objective quantification of population
structure in datasets means that disparate datasets may now be
compared. This opens up the ability to conduct theoretical and
practical tests on the nature of population structure and the factors
that influence its inception and perpetuation. The ability to look
within a dataset at the causes of structure help to determine the
relative difference of populations and allows further interpretation
of the data. We believe that objectively quantifying the levels of
structure in data and taking into account important characteristics
such as population size, number of predefined populations and

statistical significance is a significant addition to the currently
available analyses.

Supporting Information
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